
423

 31 Case Studies: Java Natural Language
Tools Available on the Web

Chapter

Objectives
This chapter provides a number of sources for open source and free atural
language understanding software on the web.

Chapter
Contents

31.1 Java NLP Software
31.2 LingPipe from the University of Pennsylvania
31.3 The Stanford Natural Language Processing Group Software
31.4 Sun’s Speech API

 31.1 Java Natural Language Processing Software

 There are several popular java-based open-source natural language
understanding software packages available on the internet. We describe
three of these in Chapter 31. It must be remembered both that these web
sites may change over time and that new sites will appear focusing on
problems in NLP.

31.2 LingPipe from the University of Pennsylvania

Background LingPipe is an available Java resource from Alias-I, http://www.alias-
i.com/lingpipe/. Alias-i began in 1995 as a collaboration of students at
University of Pennsylvania. After competing in different events (including
DARPA MUC-6), the group was awarded a research contract under the
TIDES (Trans-Lingual Information Detection Extraction and
Summarization) program. Starting as Baldwin Language Technologies, the
company’s name later changed to Alias-i. LingPipe was used in two of
Alias-i’s products, FactTracker and ThreatTracker. In 2003, LingPipe was
released as open source software with commercial licenses available as well.
LingPipe contains many tools for linguistic analysis of human language,
including tools for sentence-boundary detection; and a part-of-speech
tagger and phrase chunker.

LingPipe is easy to download from the website. The download contains
demos, documentation and there are models available to download as well.
On the website there are tutorials, documentation, and a FAQ. Also there
are links to the community of LingPipe consumers. This includes a listing
of some commercial customers, as well as research patrons. There is a
newsgroup for discussion as well as a blog for being kept up to date on the
suite.

We next take a look at some of the tools provided by LingPipe.
Sentence-
boundary
Detection

To start with, there are tutorials contained in the download for the
sentence-boundary detection classes. These tutorials contain example
programs that use and extend the com.aliasi.sentences classes. If you follow

424 Part IV: Programming in Java

the tutorials, you will get suggestions for how some of the classes can be
extended to do sentence detection for other corpora.

The AbstractSentenceModel class contains the basic functionality needed to
detect sentences. When extending this class, definitions of possible stops,
impossible penultimates, and impossible starts are needed. Possible stops
are any token that can be placed at the end of a sentence. This includes ‘.’
and ‘?’. Impossible penultimates are tokents that cannot precede an end of
the sentence. An example would be ‘Mr’ or ‘Dr’. Impossible starts are
normally punctuation that should not start a sentence and should be
associated with the end of the last sentence. These can be things like end
quotes.

The AbstractSentenceModel is already extended to the HeuristicSentenceModel,
which is extended to the IndoEuropeanSentenceModel, and the
MedlineSentenceModel. These last two provide good examples of definitions
for the possible stops, impossible penultimates and the impossible starts.
From these examples, HeuristicSentenceModel can be extended to suit a data
set. After creating an example set with known sentence boundaries,
running the evaluator contained in the tutorials for the sentences class
gives an idea of fallacies of the current model. From the evaluator’s output
files, corrections can be made to the possible stops, impossible
penultimates and impossible starts. Be careful though; when attempting to
remove all false positives and all false negatives, the definitions can be
come too rigid and cause more errors when run with more then the
example set. So try to find a good balance.

Within the download, the AbstractSentenceModel is only extended to the
HeuristicSentenceModel. This does not mean that you must use the
HeuristicSentenceModel. The HeuristicSentenceModel can be used as an example
to create a new class that extends only AbstractSentenceModel. Therefore if
you have a different type of model that you would like to use, extend
AbstractSentenceModel and try it out.

Part-of-speech
Tagger

The part-of-speech (POS) tagger is a little more complicated then the
sentences classes. To use it the POS tagger must be trained. After it is
trained, the tagger can be used to produce a couple of different statistics
about its confidence of the tags it applies to input. In the download there
are examples of code for the Brown, Genia and MedPost corpora. The
classes used in making a POS tagger come from the com.aliasi.hmm package.
The tagger is a HmmDecoder defined by a HiddenMarkovModel.

To train a tagger, you need first a corpus or test set that has been tagged.
Using this tagged set, the HmmCharLmEstimator (in the com.aliasi.hmm
package) can read the training set and create a HiddenMarkovModel. This
model can be used immediately, or it can be written out to file and used at
a later time. The file can be useful when evaluating different taggers. For
each test on different corpora, the exact tagger can be used without having
to recreate it each time.

Now that we have a tagger, we can use it to tag input. Within one
HmmDecoder there are a couple of different ways to tag; all are methods of
the decoder you create from the HiddenMarkovModel. Based on what kind
of information you need, the options are first-best, n-best and confidence-

 Chapter 31 Web-based Java NLP software 425

based. First-best returns only the “best” tagging of the input. N-best
returns the first n “best” taggings. Confidence-based results are the entire
lattice of forward/backward scores.

Provided in the tutorials is an evaluator of taggers. This uses pre-tagged
corpora and trains a little, then evaluates a little. It parses reference
taggings, uses the model to tag, and evaluates how well the model did. The
reference tags are then added to the training data, and the parser moves on.
The arguments to the evaluator will determine how well the model learns
and how long it will take. Experiment with this package to see what is
appropriate for your own data set.

A tagger produced by this package could be used in other algorithms.
Whether as tags needed for the algorithm or as a source to produce a
grammar, this POS tagger is useful. A future project might be to create a
parse tree from the POS tagger, but that functionality is not within
LingPipe. An exercise might be to extend LingPipe to create parse trees.

 31.3 The Stanford Natural Language Processing Group

 The Stanford NLP group is a team of faculty, postdoctoral researchers,
graduate, and undergraduate students, members from both the Computer
Science and Linguistics departments. The site http://nlp.stanford.edu
describes the team members, their publications, and the libraries that can
be downloaded.

Exploring this Stanford website, the reader finds, as of January 2008, six
Java libraries available for work in natural language processing. These
include a parser as well as a part-of-speech tagger. Although the
information contained in the introduction for each package is extensive
and contains a set of “frequently asked questions”, the code
documentation is often sparse without sufficient design documentation.
The libraries are licensed under the full GNU Public License, which means
that they are available for research or free software projects.

The Stanford
Parser

The parser makes up a major component of the Stanford NLP website.
There is background information for the parser, an on-line demo, and
answers for frequently asked questions. The Stanford group refers to their
parser as “a program that works out the grammatical structure of
sentences”. The software package includes an optimized probabilistic
context-free grammar (Luger 2009, Section 15.4).

Within the download of the Stanford parser is a package called
edu.stanford.nlp.parser. This parser interface contains two functions: One
function determines whether the input sentence can be parsed or not. The
other function determines whether the parse meets particular parsing goals,
for example, that it is a noun phrase followed by a verb phrase sentence.
There are also a number of sub-interfaces provided, including ViterbiParser ,
see Chapter 30, and KBestViterbiParser, the first supporting the most likely
probabilistic parse of the sentence and the second giving the K best parses,
where all parses are returned with their “scores”.

Within the interface edu.stanford.nlp.parser there is a further interface,
edu.stanford.nlp.parser.lexparser, which supports parsers for English,

426 Part IV: Programming in Java

German, Chinese, and Arabic expressions. There are also classes, that once
implemented, can be used to train the parser for use on other languages.
To train the parser, a training set needs to include systematically annotated
data, specifically in the form of a Treebank (a corpus of annotated data that
explicitly specifies parse trees). Once trained the parser contains three
components: grammars, a lexicon, and a set of option values. The grammar
itself consists of two parts, unary (NP = N) and binary (S = NP VP)
rewrite rules. The lexicon is a list of lexical (word) entries) preceeded by a
keyword followed by a raw count score. The options are persistent
variable-value pairs that remain constant across the training and parsing
stages.

The Stanford tools also include a GUI for easy visualization of the trees
produced through parsing the input streams. The training stages require
much more time and memory than using the already trained parser. Thus,
for experimental purposes, it is convenient to use the already trained
parsers, although there is much that can be learned by stepping through the
creation of a parser.

Named-Entity
Recognition

A program that performs named–entity recognition (NER) locates and
classifies elements of input strings (text) into predefined categories. For the
Stanford NER the primary categories for classification are name,
organization, location, and miscellaneous. There are two recognizers, the first
classifying the first three of these categories and trained on a corpus
created from data from conference proceedings. The second is trained on
more specific data, the proceedings from one conference.

Using the text classifiers is straightforward. They can be run either as
embedded in a larger program or by command line. When run as part of a
program the classifier is read in using a function associated with
CRFClassifier. This function returns an AbstractSequenceClassifier that uses
methods to classify the contents of a String. An example of one (of the
three possible) output formats, called /Cat is: My/O name/O is/O
Bill/PERSON Smith/PERSON ./O. /O indicates that the text string is
not recognized as a named-entity. There are a number of issues involved in
this type classification, for example that at this point Bill Smith is not
recognized as the name of a single person but rather as two consecutive
PERSON tokens. When working with this type pattern matching it is
important to monitor issues in over-learning and under-learning: when one
pattern matching component is created to fit a complex problem situation,
another set of patterns may not then be classified properly.

Unfortunately the documentation for the Named-Entity package is
minimal. Although it contains a set of JavaDocs they can be both wrong
(referring to classes that are not included) or simply unhelpful.

31.4 Sun’s Speech API

 To this point we have focused on Java-based natural language processing
tools analyzing written language. Speech recognition and synthesis are also
important components of NLP. To assist developers in these areas Sun
Microsystems has created an API for speech. This Java API can be found
at http://research.sun.com/speech. From this page there is also a link to a

 Chapter 31 Web-based Java NLP software 427

free speech recognizer developed using this API at Carnegie Mellon
University, as well as a speech written by Sun that is based on Flite, a
speech synthesis engine also developed at Carnegie Mellon University. To
run programs written in the Java Speech API needs a compliant speech
recognizer and synthesizer, audio hardware for output and a microphone
for input.

The API contains three packages: speech, speech recognition, and speech
synthesis. The speech package contains several packages and interfaces
used by both the recognition and synthesis systems. The main interface is
an Engine that is the parent interface for all speech systems. The engine
contains the procedures for communicating with other classes as well as
allocation/deallocation methods for moving between states. These states
determine whether the engine has acquired resources sufficient for
executing a function. The engine also provides methods to pause and
resume play and to access all properties including, listeners, audio, and
vocabulary managers. The speech class also contains procedures for
listeners as well as a Word class that contains the written and spoken
pronunciation forms for words. The collection of words, the vocabulary, is
controlled by the Vocabulary manager.

The main class of the speech recognizer is Recognizer. An instance of
recognizer creates listener events and passes them to all registered event
listeners much the same way as action listeners work for GUI applications.
The events are either accepted or rejected based on sets of grammar rules.
There are two forms of grammar rules: rule-based and dictation. Dictation
rules offer fewer constraints on what can be said with a resulting higher
cost in computational resources an often lesser quality results. Rule-based
grammars are constrained to the Java speech grammar format (JSGF) and
as a result impose a greater constraint on the recognizer. They also require
fewer resources with a reasonable freedom for expressions. A tutorial for
the JSGF is located at http://java.sun.com/products/java-media/
speech/forDevelopers/JSGF and can be used to create grammars.

Once a grammar is created it is passed to a recognizer and activated. Then
the recognizer begins processing and sending out events to all registered
listeners. Sample applications are linked to the previously mentioned web
site.

The Java speech API also contains a package for synthesis. Analogous to
the recognizer, the synthesizer package contains a Synthesis class. The
synthesizer is able to speak instances of the Speakable class in a voice
constructed by an instance of the Voice class. This class contains both make
and female, as well as young, middle-aged, and older voices. It’s only task is
to output a “speakable” text, as defined by a Java speech markup language
(JSML) specification. These specifications can be found at
http://java.sun.com/products/java-media/speech/forDevelopers/JSML/.

Demonstrations of the Sun speech synthesizer are available at
http://fretts.sourceforge.net/docs/index.php. where the source code can
be downloaded. The Sun speech API comes with a wealth of
documentation and example source code. Which is fairly transparent and
easy to follow.

428 Part IV: Programming in Java

There are a number of other web-based sources that support tasks in
natural language text and speech understanding. These range from
phoneme capture, the development of word and language models using
probabilistic finite-state acceptors and various forms of Markov models.
There are also parsers and recognizers of sentence structures as well as
more examples of speech recognizers and synthesizers. There are also a
number of tools available for speech to text conversion. Besides tools in
Java, many also exist in other languages including C++ and Python.

